
Synergistic Partitioning in Multiple Large Scale
Social Networks

Songchang Jin∗, Jiawei Zhang†, Philip S. Yu†, Shuqiang Yang‡ and Aiping Li‡
∗College of Computer, National University of Defense Technology

Changsha, Hunan 410073, China
Email: jinsongchang87@gmail.com

†Department of Computer Science, University of Illinois at Chicago
Chicago, Illinois 60607

Email: jzhan9@uic.edu, psyu@uic.edu
§College of Computer, National University of Defense Technology

Changsha, Hunan 410073, China
Email: sqyang9999@126.com, apli1974@gmail.com

Abstract—Social networks have been part of people’s daily
life and plenty of users have registered accounts in multiple
social networks. Interconnection among multiple social networks
adds a multiplier effect to social applications when fully used.
With the sharp expansion of network size, traditional stand-
alone algorithms can no longer support computing on large scale
networks while alternatively, distributed and parallel computing
become a solution to utilizing the data-intensive information
hidden in multiple social networks. As such, synergistic parti-
tioning, which takes the relationships among different networks
into consideration and focuses on partitioning the same nodes of
different networks into same partitions. With that, the partitions
containing the same nodes can be assigned to the same server
to improve the data locality and reduce communication over-
head among servers, which are very important for distributed
applications. To date, there have been limited studies on multiple
large scale network partitioning due to three major challenges: 1)
the need to consider relationships across multiple networks given
the existence of intricate interactions, 2) the difficulty for stand-
alone programs to utilize traditional partitioning methods, 3) the
fact that to generate balanced partitions is NP-complete. In this
paper, we propose a novel framework to partition multiple social
networks synergistically. In particular, we apply a distributed
multilevel k-way partitioning method to divide the first network
into k partitions. Based on the given anchor nodes which exist
in all the social networks and the partition results of the first
network, using MapReduce, we then develop a modified dis-
tributed multilevel partitioning method to divide other networks.
Extensive experiments on two real data sets demonstrate that
our method can significantly outperform baseline independent-
partitioning method in accuracy and scalability.

I. INTRODUCTION

With the rapid development of computer science and
technology, social network service has been thriving for sev-
eral years, and has been playing increasingly important role
in people’s daily life. Social network allows individuals to
create public profiles, to establish connections with a list of
users with whom to share photo/video/music/blogging, and
to send/receive messages across the connections within the
system, etc [1, 2]. Plenty of users have signed up for several
social networks focusing on different kinds of content, and
are maintaining different relationships in different networks
simultaneously.

In recent years, social network size drastically increases.
A recent report from BI Intelligence indicates that, among
the largest social networks, Facebook still has the largest
user population at 1.16 billion monthly active users (MAUs),
which is followed by YouTube with 1 billion, and China’s
social media network, Qzone, takes the third position with 712
million MAUs [3].

Co-processing refers to the information integration among
multiple social networks. For example, current friend recom-
mendation function derives information from a single network
environment. However, through co-processing, information
from multiple networks can be integrated and the efficiency
and accuracy of two related friends can be greatly enhanced.
The ever-expanding user base creates more challenges for co-
processing the large amount of data stored in the multiple
social networks environment. In our previous work, we have
developed a novel community detection method, MCD (Mu-
tual Community Detector) [4] which uses the heterogeneous
information in multiple networks, but this method is limited
to small networks. How to generalize MCD to large scale
heterogeneous networks has been a burning question for us.

Users maintaining accounts in multiple networks are de-
fined as anchor users. Making full use of the interactions of
anchor users in different social networks will create multiplier
effect for social applications. However, it is troublesome for
large sized networks (notably the number of links) to be
stored in main memory. Distributed and parallel computing on
distributed file system will be more efficient than stand-alone
computing on local disk.

As of now, there have been intensive research on partition-
ing within single network environment [5]. But problems about
partitioning within multiple relevant network environment,
especially within multiple large scale relevant networks, has
less been studied. in this paper, we take into account data
locality while partitioning multiple social networks so that the
same partition on different social networks can be assigned
to the same server. This will decrease the communication
overhead among servers.

However, synergistic partitioning across multiple large s-
cale social networks is very difficult for the following chal-

A
B

C

A B

C

Fig. 1. A sample network that is divided into 3 balanced partitions and each
partition has 4 nodes on the left. Corresponding abbreviated network is shown
on the right, each node represents a partition and links mean that there exist
connections between different partitions in the original network.

lenges: 1) social network, distinct from generic data, usual-
ly contains intricate interactions, and multiple heterogeneous
networks mean that the relationships across multiple networks
should be taken into consideration. 2) Network size implies
it is difficult for stand-alone programs to apply traditional
partitioning methods and it is a difficult task to parallelize the
existing stand-alone network partitioning algorithms. 3) For
distributed algorithms, load balance should be taken into con-
sideration and how to generate balanced partitions is another
challenge.

To address the challenges, we develop a network structure
based distributed network partitioning framework. In it, 1) we
identify the anchor nodes among the multiple networks. 2) We
select a network as the datum network, then divide it into k
balanced partitions and generate 〈anchor node ID, partition
ID〉 pairs as our objective. 3) Based on the objective, we
coarsen the other networks (called as synergistic networks)
into smaller ones. 4) We divide the smallest networks into
k balanced initial partitions, and try to assign same kinds
of anchor nodes into the same initial partition as many as
possible. Here, anchor nodes of same kind means that they
are divided into same partition in the datum network. 5) we
project the initial partitions back to the original networks.

The main contributions of this paper are as follows: 1)
To the best of our knowledge, this is the first work to study
synergistic partitioning problem in multiple large scale social
networks. 2) We develop a new framework to tackle the
problem. 3) We develop a distributed multilevel network coars-
ening algorithm. 4) We propose a modified label propagation
algorithm to generate initial partitions.

The rest of the paper is organized as follows: Section II is
about related work. In Section III, we formulate the problem.
Section IV is about the framework and the detail information.
We conduct experiments in Section V and conclude our work
in Section VI.

II. RELATED WORK

Mathematically, social networks can be represented as
graphs. In the past years, researchers have developed many
graph partition algorithms and methods for single networks.
But graph partition is NP-complete [6], so, it is unlikely to
always find out optimal partitions with a polynomial-time
algorithm. Thus, almost all the practical algorithms on network
partition are heuristics. Besides, to divide a network into k
partitions, traditional methods usually generate a bisection, and
take out recursive bisection method on it to get k partitions.

In this section, we will briefly review some classical network
partition algorithms.

Researchers have developed many sequential algorithms for
network partition, which can be referred into local improve-
ment method and global method. Local improvement method
takes a partition of a network as input, and tries to decrease the
cut size with some local search methods. To perform a local
improvement method, initial partitions should be generated
by some other methods beforehand, and the performance is
strongly affected by the quality of initial partitions.

One of the ground-breaking network partition methods
is Kernighan-Lin (KL) method [7], which aims to divide a
network into 2 balanced partitions. In it, an initial balanced
bisection should be given, and then iterations will be performed
to try to find a sequence of node pair exchanges that can
lead to a reduction in the cut size. Time expenditure of each
iteration in KL method is O(|n|3). KL method is so important
that plenty of local improvement methods are variations of
it. For example, Dutt optimized the KL method and made it
possible to complete KL process in O(|E|max{log|n|, dmax})
time, where dmax means the maximum of node degree [8].
Fiduccia-Mattheyses (FM) [9] is another KL inspired method.
For FM method, it does not choose node pairs as in KL method
but single nodes to improve edge-cut in each iteration which
may result in unbalanced partitions, and each iteration can be
finished in O(|E|) time.

Unlike the KL and FM methods, Simulated annealing (SA)
method [10] do not use greedy search but is based on statistical
mechanics. It is a general purpose local search method, which
tries to randomly select a neighbor node to estimate if it can
improve the result of solution. But related experiments show
that SA is not suitable for networks that are sparse or has some
local structure [11].

Global method takes the whole graph and number of
partitions - k as input, and generates a k-way partition. Most
of these methods first bisect the graphs, and then apply bi-
section step recursively until k node subsets generated. Global
methods can be divide into 2 categories according to whether
the spatial location information of nodes are included in the
networks, geometric methods and coordinate-free methods [5].

Recursive coordinate bisection (RCB) [12] is the prime
example of geometric algorithms. The algorithmic thought of
the RCB method is very simple, a coordinate axis should be
chosen at the beginning, then it tries to find an orthogonal
plane of the axis that can divide the node set V into 2 equal
sized partitions. Inertial method [13] proposed by Farhat and
Lesoinne elaborates the RCB method. In the inertial method,
the axis with minimum angular momentum [14] of the node
set is chosen instead of coordinate axis in the RCB method.
Leland and Hendrickson then combined the KL method with
inertial method together to improve the bisection generated by
the inertial method.

In some networks, space location information of nodes
is not embedded or can not get high-quality partitions even
if given. In this situation, some algorithms only considering
the combinational network structure have been proposed. The
recursive graph bisection (RGB) method [15] begins by finding
a pseudo peripheral node in the network, i.e., one of a pair of
nodes that are approximately at the greatest network distance

from each other in the network. Finally, the nodes are sorted
with respect to these distances and then the RGB method
divides the nodes into two equal sized sets.

Pothen, Simon and Liou developed an eigenvector based
method - recursive spectral bisection (RSB) method [16].
The RSB method sorts its nodes with respect to eigenvector
coordinates and then divides the sorted nodes into two par-
titions. Based on RSB, Barnard and Simon first proposed a
multilevel network graph partition method - multilevel-RSB
to speed up the RSB method. The multilevel method consists
of three phases: coarsening phase, partitioning phase and un-
coarsening phase, which we will dilate in Section IV. The
multilevel idea in the multilevel-RSB method has a profound
influence on subsequent network partition methods, and lots of
multilevel algorithms have been proposed by researchers, such
as multilevel-KL methods [17, 18], multilevel k-way partition
[19], multilevel graclus method [20], et al.

The KL method and SA method have been proved to
be P-complete [21]. However, several parallel approximations
of KL have been developed based on multi-processors (not
multi-servers). The earliest KL based parallel network method
which also is the earliest parallel method for network bisec-
tion is proposed by Gilbert and Zmijevski [22]. Savage and
Wloka developed a Mob heuristic method [21]. Özturan et al
proposed a new network bisection method based on iterative
local node exchange between processors. Based on local
improvement and a parallel multilevel evolutionary algorithm,
Sanders and Schulz developed a balanced network partition
method - KaFFPaE [23]. In 2013, Rahimian et al proposed a
distributed balanced graph partition method - ja-be-ja based
on local search and SA techniques [24]. Some other parallel
network partition methods can be found in [5] and most of
parallel methods are essentially parallelization of well-known
sequential algorithms, which usually are developed on multi-
processor but stand-alone servers.

III. PROBLEM FORMULATION

The problem we are trying to address in this paper is
synergistic partitioning in multiple large scale social networks.
In this section, we formulate the problem and describe the
assumptions used duing the work.

A. Terms and Definitions

Definition 1: (Social network) A social network can be
mathematically described as G = (V,E), where V and E
represent the node set and the edge set of G, respectively. An
integer n = |V | is used to record the size of V and m = |E|
represents the number of edges. v(i) represents node i and
corresponding degree is d(v(i)). ei,j ∈ E means the link
between v(i) and v(j).

Definition 2: (Anchor node and Non-anchor node) Users
involved in multiple social networks simultaneously are called
as anchor users, and named as anchor nodes in network set
GS = {G1, G2, . . . , Gt}. All the anchor nodes constitute the
anchor node set A, and A = ∩V i, 1 ≤ i ≤ t. The left nodes
are called non-anchor nodes, constituting the non-anchor node
set - NA. So, A ∩NA = ∅ and A ∪NA = ∪V i, 1 ≤ i ≤ t.

Definition 3: (Input space) Input space InS means the
network set and the anchor node set in this paper, so InS =

(GS,A). From Ins, we are able to get all the structural
information about the multiple social networks.

Definition 4: (Balanced network partition) For an undi-
rected network G = (V,E), balanced (or uniform) network
partition refers to the problem of partitioning V into equal
sized components and the number of links across boundaries
of different components is minimized. All the nodes and links
within a component constitute a partition. If the number of
components is given as k, then the problem is called as
balanced k-way network partitioning problem.

B. Problem Formulation

To take full advantage of users’ relationships in multiple
social networks, cooperative analysis is required. However, in
view of the facts that even a single social network is so large
that the network data can not be stored in the main memory,
but may need to placed onto local disk or remote distributed
filesystem [25]. In the distributed data placement case, for the
existence of anchor nodes connecting multiple social networks
together closely, network partitioning methods have to take the
relationships among the social networks into account.

Links in social networks can reflect people’s interactions
in the real world to a great extent. So, we can assume that
anchor users’ interpersonal relationships in different social
networks should be similar. If we take these anchor nodes as
samples, and assuming these samples are evenly distributed,
it would be reasonable to believe that there are a lot of
similar structures revolving around the samples hidden in the
networks. Furthermore, if we expand the similar structures to
the whole networks, we will be able to get potential similar
partition pairs. Finally, we can align the partitions of all
the networks and put similar partitions onto same servers.
As a result, data locality will increase and communication
volume between servers will reduce remarkably, which are
very important in distributed applications. For example, in
the ideal case of cooperative partitioning dividing two social
networks into k partitions, applications only need searching
local subnetworks and do not need searching the subnetworks
stored in other servers, and the communication volume may
decrease from O(m2) to O(m). Fig.2 shows a simple diagram
of result comparison between synergistic partitioning method
and independent partitioning method.

Mathematically, synersitic partition problem can be de-
scribed as: For an input space InS = (GS,A), try to find
a partition set PS = {P 1, P 2, . . . , P t}, where the amount
of anchor nodes divided into same partitions in different
networks - SumAN is maximized and the edge-cut size EC
is minimized. Let pidx(G, v(i)) and P (G, j) be the partition
ID of v(i) and partition j in network G, respectively. wi,j

represents the weight of link ei,j . In the networks studied in
this paper, wi,j = 1 if ei,j ∈ E, and else wi,j = 0.

count(v(i)) =

 1 if all pid(Gj , v(i))s are the
same, where 1 ≤ j ≤ t.

0 others.
(1)

SumAN =
∑

v(i)∈A

count(v(i)) (2)

1

12 2

3

3
4

4

5

5

6

6

77

1

2

7

6

5

4

3

1
2

34

5

6

7

1
2

34

5

6

7

(a)

(c)

(b)

(d)

I II

II II

P1
P2

P3

P1

P2

P3

P1

P3

P2

Fig. 2. Diagrammatic sketch of synergistic partitioning method and indepen-
dent partitioning method on two social networks - network I (datum network)
and network II (synergistic network). Anchor users and corresponding node
IDs are shown on the right. (d) shows the result of synergistic partitioning
method taking the partition result of anchor nodes in datum network into con-
sideration. (c) is the result of an independent partitioning method. Compared
the partition results of network II shown in (c) and (d) with the result of
network I in (a), similarity of partitions between (a) and (d) is higher than
that between (a) and (c).

EC(G) =
∑

v(i),v(j)

wi,j (3)

Where v(i) ∈ P (G, u), v(j) ∈ P (G,w) and u 6= w.

EC =

t∑
i=1

EC(Gi) (4)

IV. PROPOSED FRAMEWORK

In this section, we describe the heuristic framework for
synergistic partitioning among multiple large scale social
networks, and we call the framework - SPMN.

A. The Basic Idea

Data processing in SPMN can be roughly divided into two
stages: datum generation stage and network alignment stage.

When got the anchor node set A, the framework will apply
a distributed multilevel k-way partitioning method onto the
datum network to generate k balanced partitions. During this
process, the anchor nodes are ignored and all the nodes are giv-
en the same treatment. We call this process datum generation
stage. When finished, partition result of anchor nodes will be
generated, we store them in a set - Map〈anidx, pidx〉, where
anidx is anchor node ID and pidx represents the partition ID
the anchor node belongs to.

After the datum generation stage, synergistic networks
will be partitioned into k partitions according to the
Map〈anidx, pidx〉 to make the synergistic networks to align
to the datum network, and during this process max{SumAN}
and min{EC} are the objectives. We call this process network
alignment stage.

B. Distributed Multilevel k-way partitioning

Algorithms guaranteed to find out near-optimal partitions
in a single network have been studied for a long period, which
have been discussed in Section II. But most of the methods
are stand-alone, and performance is limited by the server’s
capacity. Inspired by the multilevel k-way partitioning (MKP)
method proposed by Karypis and Kumar [19, 26] and based
on our previous work [25], we try to use MapReduce [27] to
speedup the MKP method. As the same with other multilevel
methods, MapReduce based MKP also includes three phases:
coarsening, init partitioning and un-coarsening. Fig.3 gives a
vivid description about MKP method.

Coarsening phase is a multilevel process and a sequence of
smaller approximate networks Gi = (Vi, Ei) are constructed
from the original network G0 = (V,E), where |Vi| < |Vi−1|,
i = 1, 2, ..., s. To construct coarser networks, node combina-
tion and edge collapsing should be performed. The task can
be formally defined in terms of matchings [28]. A matching
is a set of node pairs M = List〈i, j〉, i 6= j and ei,j ∈ E,
and in which each node can only appear for no more than
once. For a network Gi with a matching Mi, if 〈j, k〉 ∈ Mi

then v(j) and v(k) will form a new node v(q) ∈ Vi+1. The
weight of v(q) equals to the sum of weight v(j) and v(k),
besides, all the links connected to v(j) or v(k) in Gi will
be connected to v(q) in Gi+1. The total weight of nodes will
remain unchanged during the coarsening phase but the total
weight of edges and number of nodes will be reduced. Define
W (T) to be the sum of edge weight in T and N(T) to be the
number of components in T . It will be that:

W (Ei+1) = W (Ei)−W (Mi) (5)

N(Vi+1) = N(Vi)−N(Mi) (6)

Analysis in [29] shows that for the same coarser network,
smaller edge-weight corresponds to smaller edge-cut. With the
help of MapReduce framework, we use a local search method
to implement an edge-weight based matching (EWM) scheme
to collect larger edge weight during the coarsening phase. For
the convenience of MapReduce, we design a new network
representation format: each line contains essential information
about a node and all its neighbors (NN), such as node ID,
node weight (VW), edge weight (w), et al. The whole network
data are distributed in distributed filesystem, such as HDFS
[30], and each data block only contains part of node set and
corresponding connection information. Function map() takes
a data block as input and search locally to find node pairs to
match according to the edge weight, reduce() is in charge of
node combination, renaming and sorting. With the new node
IDs and matching, a simple MapReduce job will be able to
update the edge information and write the coarser network
back onto HDFS. The complexity of EWM is O(|E|) in each
iteration and pseudo code about EWM is shown as follow.
Input:

A network, Gh;
Maximum weight of a node, maxVW = n/k;

Output:
A coarser network, Gh+1;

1: map() function:
2: for all node i in current data block do

3: if match[i] == −1 then
4: maxIdx = −1;
5: sortByEdgeWeight(NN(i));
6: for all vj ∈ NN(vi) do
7: if match[j] == −1& VW (i) + VW (j) <

maxVW then
8: maxIdx = j;
9: end if

10: match[i] = maxIdx;
11: match[maxIdx] = i;
12: end for
13: end if
14: end for
15: reduce() function:
16: new newNodeID[n+ 1];
17: new newVW [n+ 1];
18: set idx = 1;
19: for all i ∈ [1, n] do
20: if i < match[i] then
21: set newNodeID[match[i]] = idx;
22: set newNodeID[i] = idx;
23: set newVW [i] = newVW [match[i]] = VW (i) +

VW (match[i]);
24: idx++;
25: end if
26: end for

After several iterations, a coarsest undirected weighted
network Gs consisting of only hundreds of nodes will be
generated. For the network size of Gs, stand-alone algorithms
with high computing complexity will be acceptable for init
partitioning. Meanwhile, the weights of nodes and edges of
coarser networks are setted to reflect the weights of the
finer network during the coarsening phase, so Gs contain-
s sufficient information to intelligently satisfy the balanced
partition and the minimum edge-cut requirements. Plenty of
traditional bisection methods are quite qualified for the task.
In this paper, we adopt the KL method with an O(|E|3)
computing complexity to divide Gs into two partitions and
then take recursive invocations of KL method on the partitions
to generate balanced k partitions.

Un-coarsening phase is inverse processing of coarsening
phase. With the initial partitions and the matchings of the
coarsening phase, it is easy to run the un-coarsening process
on the MapReduce cluster.

C. Synergistic Partitioning Process

In this section we talk about the synergistic partitioning
process on the synergistic networks with the knowledge of
partition results of anchor nodes from datum network. The
synergistic partitioning is also a MKP process but quit different
from general MKP methods.

In the coarsening phase, anchor nodes are endowed with
higher priority than non-anchor nodes. When choosing nodes
to pair, we assume that anchor nodes and non-anchor nodes
have different tendencies. Let Gd be the datum network and
Gs = {Gs1, Gs2, . . . , Gs(t−1)} be the synergistic network set.

For an anchor node v(i), it would prefer to combine with
another anchor node v(j) which has the same partition ID
in the datum network, i.e., pidx(Gd, v(i)) = pidx(Gd, v(j))

1

1

1 1

2
23

3

4

4

2
11

10

9

8

7

6

5

4

3

12

13

14

2 3
4

15

5

6 7

8

1
2 3 4 5

1 2 3
6 2 7

G0

G1

G2

G3

C
oarsen

in
g

U
n

-coarsen
in

g

Init partitioning

Fig. 3. Diagrammatic sketch of synergistic partitioning process dividing a
synergistic network into two partitions according to the partition results of
anchor nodes in datum network. In coarsening phase, the networks are stored
in two servers, V i

1 = {vi(j)|j ≤ |V i|/2} are stored on a sever and the
others are on the other server. Anchor nodes are with colors, and different
colors represent different partitions. Node pairs encircled by dotted chains
represent the matchings. Numbers on chains mean the order of pairing.

where v(i) ∈ A, v(j) ∈ A and i 6= j. Second, if there is
no appropriate anchor node, it would try to find a non-anchor
node to pair. When planing to find a non-anchor node to pair,
the anchor node, assuming to be v(i), would like to find a
correct direction, and it would prefer to match with the non-
anchor node v(j), which has lots of anchor nodes as neighbors
with the same pidx with v(i). When combined together, the
new node will be given the same pidx as the anchor node.
To improve the accuracy of synergistic partitioning among
multiple social networks, an anchor node will never try to
combine with another anchor node with different pidx.

For a non-anchor node, it would prefer to make a pair
with an anchor node neighbor which belongs to the dominant
partition in the non-anchor node’s neighbors. Here, dominant
partition in a node’s neighbors means the number of anchor
nodes with this partition ID is largest. Next, a non-anchor node
would choose a general non-anchor node to pair. At last, a non-
anchor node would not like to combine with an anchor node
being part of the partitions which are in subordinate status.
After combined together, the new node will be given the same
pidx as the anchor node. To ensure the balance among the
partitions, about 1/3 of the nodes in the coarsest network are
unlabeled.

Fig.3 shows a diagrammatic sketch of synergistic parti-
tioning process. Take G0 for example, nodes v1 ∼ v7 and
the corresponding links information are stored on the same
server and the other nodes are stored on another server. Nodes
in pairs 〈v1, v2〉 and 〈v10, v11〉 are all with the same pidx,
so they should be tackled first. v6 and v15 choose a correct
direction to make a pair. Then, v3 can not pair with v1, so it
chooses v4 to combine. Finally, after searching locally, v7 can
not find a local neighbor to pair, but has to make a pair with
its remote neighbor v8. The situation of v8 is the same as v7.

As discussed in part A of Section IV, max{SumAN},
min{EC} and trying to balance the size of partitions are the
objectives in synergistic partitioning process. However, when
put together, it is impossible to achieve them simultaneously.
So, we try to make a compromise among them and develop
a heuristic method to tackle the problems. First, according to
the conclusion - smaller edge-weight corresponds to smaller
edge-cut and the pairing tendencies, we propose a modified
EWM (MEWM) method to find a matching in the coarsening
phase, of which the edge-weight is as large as possible. At
the end of the coarsening phase, there is no impurity in any
node, meaning that each node contains no more than one
type of anchor nodes. Besides, a ”purity” vector attribute and
a ”pidx” attribute are added to each node to represent the
percentage of each kind of anchor nodes swallowed up by
it and the ”pidx” of the new node, respectively. Then, during
the init partitioning phase, we treat the anchor nodes as labeled
nodes and use a modified label propagation algorithm to deal
with the non-anchor nodes in the coarsest network. At the
end of the init partitioning phase, we will be able to generate
balanced k partitions and to maximize the number of same kind
of anchor nodes being divided into same partitions. Finally,
we project the coarsest network back to the original network,
which is the same as traditional MKP process. The pseudo
code of coarsening phase in synergistic partitioning process is
as follow.
Input:

A network, Gh;
A map consists of anchor nodes with pidxs,
Map〈anidx, pidx〉;
Maximum weight for a node, maxVW = n/k;

Output:
A coarser network, Gh+1;

1: map() function:
2: for all vi in current data block do
3: if match[i] == −1 then
4: set flag = false;
5: sortByEdgeWeight(NN(vi));
6: if vi ∈Map〈anidx, pidx〉 then
7: for all vj ∈ NN(vi) & match[j] == −1 do
8: if vj ∈Map〈anidx, pidx〉

& Map.get(vi) == Map.get(vj)
&VW (i) + VW (j) < maxVW then

9: match[i] = j; match[j] = i;
10: flag = true; break;
11: end if
12: end for
13: if flag == false, no suitable anchor node then
14: for all vj ∈ NN(vi)& match[j] == −1

&VW (vi) + VW (vj) < maxNW do
15: indirectNeighbor[] = NN(vj);
16: sortByEdgeWeight(indirectNeighbor);
17: for all vk ∈ indirectNeighbor do
18: if vk ∈Map〈anidx, pidx〉

& Map.get(vi) == Map.get(vk) then
19: match[i] = j; match[j] = i;
20: flag = true; break;
21: end if
22: end for
23: if flag == true then
24: break;

25: end if
26: end for
27: end if
28: else
29: sortByEdgeWeight(NN(vi));
30: for all vj ∈ NN(vi) & vj /∈Map〈anidx, pidx〉

& VW (i) + VW (j) < maxVW
& match[j] == −1 do

31: match[i] = j; match[j] = i; break;
32: end for
33: end if
34: end if
35: end for
36: reduce() function:
37: new newNodeID[n+ 1];
38: new newVW [n+ 1];
39: set idx = 1;
40: for all i in newNodeID[] do
41: if i < match[i] then
42: newNodeID[match[i]] = idx;
43: newNodeID[i] = idx;
44: newVW [i] = VW (i) + VW (match[i]);
45: newVW [match[i]] = VW (i) + VW (match[i]);
46: idx++;
47: end if
48: end for
49: new newPurity[idx+ 1];
50: new newPidx[idx+ 1];
51: for all i ∈ [1, idx] do
52: newPurity[i] = purity[i]∗VW (i)+purity[j]∗VW (j)

VW (i)+VW (j) ;
53: newPidx[i] = max{pidx[i], pidx[match[i]]};
54: end for

The label propagation algorithm (LPA) [31] is a graph-
based semi-supervised learning algorithm. It can be used to
predict the information of unlabeled nodes by a few of labeled
nodes, and has many good natures such as simple, effective,
speedy, favorable scalability and reliability. Inspired by the
idea of local degree center based label propagation algorithm
(LDC-LPA)[32], we develop a modified LPA method to deal
with the weighted nodes and weighted links in the coarsest
network. In each iteration in LPA, normalized probabilistic
transfer matrix Tn×n should be given, then we can update
the probabilities matrix of each node Yn×k by (yi,j means the
probability of vi being labeled as j):

Y ← TY (7)

In consideration of weighted nodes and weighted links, we
have to modify the transfer matrix T . In the coarsest network,
each node is a node set, but only labeled nodes are able to
propagate their labels. Besides, each link contains plenty of
links, but it maybe that parts of the links are from the labeled
nodes. Take Fig.4 as example, vc has four neighbors with
different VW s and puritys, and the links between vc and its
neighbors are with different EW s. We assume the percentage
of links from the labeled nodes of a node, e.g. va, to the
unlabeled node, e.g. vc, equals to the purity of the node. Then,
we can define Ti,j as:

T i,j = P (j → i) =
EWi,j ∗ purityi∑

vi∈neighbor(j) EWi,j ∗ purityi
(8)

a

b

c d

e

?

labeled nodes unlabeled node

vwb

vwa
vwe

vwdewa
,c

ewd,c

ew
e,
c

ew
b,c

c? probability of being red
probability of being cyan

Fig. 4. The model of label propagation. There are three kinds of labels in
the network. For an unlabeled node, such as vc, we can consider it with its
local environment, and assign potential labels to it with different probabilities
according to the closenesses of links, such as ea,c, eb,c, ed,c, ee,c. Finally,
an unlabeled node will be given the label with the largest probability.

TABLE I. DATA SETS DESCRIPTION

Foursquare Twitter Anchor Node
n m d n m d n

1,064,011 111,812,450 105 1,180,762 88,381,472 75 413,182

To ensure the convergence of the modified LPA, we use the
initialization method of LDC-LPA to initialize the probability
vector for each labeled node and randomly assign probabilities
to the unlabeled nodes. At the end of the iterations, a stable
probability distribution matrix Y will be generated. We can sort
Y by the first label and collect the top n/k nodes together to
form the first partition. Then delete the collected nodes from
Y and repeat the process for the other labels. Finally, we will
get k approximately equal sized partitions.

V. EXPERIMENT AND ANALYSIS

In this section, we conduct extensive experiments to eval-
uate the work proposed in this paper.

A. Experimental Environment and Data Set

In this paper, all experiments are running on a Hadoop-
1.1.1 cluster of Antivision Software Ltd., which consists
of 20 PowerEdge R320 servers (Intel Xeon CPU E5-1410
@2.80GHz, memory 8GB) with 64-bit NeoKylin Linux OS
connected by a Cisco 3750G-48TS-S switch.

Data sets used are parts of two real social networks:
Foursquare and Twitter, which are crawled from May 7th to
June 9th. In Foursquare, we crawl 1,064,011 users, among
them about 413,182 have their accounts in Tiwtter as well.
Numbers of followers and users of these 413,182 twitter
users follow in Twitter are 1,030,855,018 and 187,295,465
respectively. To compare with the baseline method, we sample
a smaller sized subnetwork of Twitter, which has about the
same size with Foursquare, to perform experiments. The details
about data sets can be found in Tab.1.

The baseline method used to compare with the SPMN
framework is an independent network partitioning method -
Metis, which is the state-of-the-art method for single network
partitioning by now. With Metis, we first partition all the
networks independently. Then for each partition P d

i , 1 ≤ i ≤ k
in Gd, we search in each synergistic network Gsj ∈ Gs, 1 ≤

(a) (b)

Fig. 5. Comparation of SPMN and Metis on Foursquare network which is
chosen as datum network.

j ≤ t− 1, the partition P sl
j ⊂ V sl containing the largest

number of same kind of anchor node with P d
i will be chosen

to align with P d
i .

To evaluate the accuracy and the balance performance of
the framework SPMN, we compute the NMI (Normalized Mu-
tual Information) [33] of anchor nodes in the datum network
and synergistic networks. To measure the edge-cut, we edge-
cut ratio to represent the percetage of edges cut off by the
partition boundaries.

B. Experiments and Results

In this section, first, we simply test the performance of
SPMN on datum network (Foursquare network) and the result
is shown in Fig.5. From Fig.5(a), we can see that SPMN
consumes more time than Metis when the partition number
k is small. But when k increases, growth of running time
slows down. When k climbs to 32, Metis becomes slower
than SPMN. By and large, the increments in both methods
are very small. The reason is as follows. The first phase
consumes the most time in MKP methods. For SPMN, time
consumptions in the first and last phases have nothing to do
with k and would be constants. Besides, they are running on
MapReduce, so time consumption should be less than Metis.
However, the coarsening phase depends two jobs (node pairing
and edge renaming) and several iterations, and job intialization
in MapReduce would take up great part. The init partitioning
phase takes recursive iterations to generate intial partitions
and the number of iterations is linear to k which is about
the same with Metis. For Metis, only the first phase doesn’t
concern partition number. If network size increases steadily,
proportion of job initialization will decrease and the total time
consumption in SPMN will be less than Metis. From Fig.5(b),
we can see that the edge-cut size in SPMN is larger than in
Metis, that is because Metis adds a refine process during the
uncoarsening phase to further optimize the partitions.

Second, we verify the validity and practicability of SPMN
on synergistic network (Twitter network). To increase the
number of data sets and guarantee the connectedness in all
networks, we deliberately and randomly ignore parts of anchor
nodes and construct another three data sets which are only dif-
ferent in the number of anchor nodes. D1 has 413,182 anchor
nodes, D2 has 328,014 anchor nodes, D3 has 203,491 anchor
nodes and D4 has 109,842 anchor nodes. To test the scalability
performance of SPMN, we enlarge the synergistic network by

TABLE II. SYNERGISTIC NETWORKS FOR SCALABILITY TEST (×106)

D1 D5 D6 D7 D8 D9
n ≈ 1.18 1.5 1.8 2.1 2.4 2.7
m ≈ 88.4 ≈ 127.4 ≈ 152.8 ≈ 178.0 ≈ 203.8 ≈ 230.2

(a) (b)

(c) (d)

Fig. 6. Performance of SPMN on Synergistic Network. (a) Edge-cut test; (b)
NMI test on the partitions of anchor nodes in datum network and synergistic
network; (c) Running time test; (d) Scalability test on synergistic networks.

adding randomly selected non-anchor node set based on D1,
and all the non-anchor nodes are from our original Twitter
data set which totally contains 1,030,855,018 nodes. The data
sets are described in Tab.2. With the partition results of anchor
nodes in datum network, we conduct experiments on D1∼D9
and results are shown in Fig.6.

First, we compare SPMN with Metis. From Fig.6(a) and
Fig.6(c), we can see that Metis cuts off less links and runs
faster than SPMN during the network partitioning process.
As discribed in previous section, Metis partitions the datum
network and synergistic network independently, which means
that it treats all the nodes as non-anchor nodes. SPMN has to
consider the distribution of anchor nodes during the partition-
ing process. Moreover, Metis’ extra refining process during the
uncoarsening phase makes it more effective in controlling the
edge-cut size and SPMN’s job intializations account for large
proportion of the total time consumption.

From the results of NMI and scalability tests shown in
Fig.6(b) and Fig.6(d), we can see that SPMN is more effective
than Metis. Higher NMI means that more anchor nodes are as-
signed to correct partitions and the mapping structure between
partitions of different neteworks is more distinct. In distributed
applications, partitions mapped together will be assigned to the
same servers. In this situation, data locality will be improved
and communication traffic among different servers will be
reduced, both of which are very important for large scale
data analysis. In traditional MKP methods, coarsening phase

comsumes the largest part of total time consumption. Metis
is a stand-alone method and can not effectively accelerate
the coarsening phase. However, SPMN, by employing the
MapReduce computing model, is able to finish the process with
relatively less time consumption. So, in terms of scalability,
SPMN performs more excellent than Metis.

Next, we focus on the performance of SPMN itself. In the
Fig.6(a), we can see that for a certain synergisitc network, the
edge-cut size increases but the speed slows down as partition
number grows. For the same partition number k, the more
the anchor nodes are, the more the links would be cut off.
Besides, for the same k, no significant difference in edge-cut
ratio is observed among different synergistic networks. For
NMI in Fig.6(b), the value decreases as k increases. When
k increases, the probability of assigning an anchor node to
incorrect partitions will be higher, then the NMI value will
decrease. When k keeps increasing, speed of NMI slows, that
is because the other partitions will share responsibility for the
incorrect partition results.

For the running time test, compared with EWM scheme,
taking the anchor nodes distribution into account in MEWM
will add extra workload to coarsening phase and will consume
more time to finish the coarsening task. Moreover, for a
certain synergistic network, higher k means that more time
is required for the LPA to generate intial partitions. For the
scalability test shown in Fig.6(d), we can see that magniitude
of increase in time consumption is negligible as k increases.
This is attributed to two reasons: 1) there are sufficient servers
to process workload in the coarsening phase. 2) the size of
the coarsest networks generated in the coarsening phase are
similar, meaning time consumtion in initial partitionning phase
of those networks are close as well. Plus, the uncoarsening
phase does not distinguish anchor nodes and non-anchor nodes.

VI. CONCLUSION

The synergistic partitioning we propose, combined with
distributed computing, has proven to be an effective approach
toward coprosessing interconnected information in multiple
social networks environement. We have seen siginificant im-
provenment in NMI and scalability when comparing our
approach with the state-of-the-art independent partitioning
method. Currenly, synergistic partitioning still has the pitfall
of enlargening the size of edge-cut. Adding a refinement
process to the uncoarsening phase could be a potential solution
to this problem. Application using synergistic patitioning is
able to partition multiple social networks considering the
relaitonship among them, which is not taken into account by
traditional methods. In this way, the coprocessing in large scale
social networks can be greatly advanced. For example, the
accuracy and performance of production recommendation will
be improved.

ACKNOWLEDGMENT

This research is supported by the National High-Tech R&D
Program of China (No.2012AA012600, 2012AA01A401,
2012AA01A402), National Natural Science Foundation of
China (No. 61202362), State Key Development Program of
Basic Research of China (No. 2013CB329601) and Project
funded by China Postdoctoral Science Foundation (No.
2013M542560).

REFERENCES

[1] A. Marion and O. Omotayo, “Development of a social
networking site with a networked library and conference
chat,” Journal of Emerging Trends in Computing and
Information Sciences, vol. 2, no. 8, pp. 396–401, Aug.
2011.

[2] D. Boyd and N. Ellison, “Social network sites: Definition,
history, and scholarship,” Journal of Computer-Mediated
Communication, vol. 13, no. 1, pp. 210–230, 2007.

[3] S. Cooper, “The planets 24 largest social media
sites, and where their next wave of growth will
come from,” Business Insider, NY, Tech. Rep., Nov.
2013. [Online]. Available: http://www.businessinsider.
com/a-global-social-media-census-2013-10

[4] J. Zhang and P. Yu, “Mcd: Mutual clustering across
multiple heterogeneous networks,” KDD2014, submitted
for publication.

[5] P. Fjällström, “Algorithms for graph partitioning: A
survey,” Linköping electronic articles in computer and
information science, vol. 3, no. 10, Sep. 1998.

[6] T. Feder, P. Hell, S. Klein, and R. Motwani, “Complexity
of graph partition problems,” in Proceedings of the thirty-
first annual ACM symposium on Theory of computing.
ACM, 1999, pp. 464–472.

[7] B. Kernighan and S. Lin, “An efficient heuristic procedure
for partitioning graphs,” Bell system technical journal,
vol. 49, no. 2, pp. 291–307, 1970.

[8] S. Dutt, “New faster kernighan-lin-type graph-
partitioning algorithms,” in Computer-Aided Design,
1993. ICCAD-93. Digest of Technical Papers., 1993
IEEE/ACM International Conference on. IEEE, 1993,
pp. 370–377.

[9] C. Fiduccia and R. Mattheyses, “A linear-time heuristic
for improving network partitions,” in Design Automation,
1982. 19th Conference on. IEEE, 1982, pp. 175–181.

[10] S. Kirkpatrick, C. Gelatt, M. Vecchi et al., “Optimization
by simmulated annealing,” science, vol. 220, no. 4598,
pp. 671–680, 1983.

[11] R. Williams, “Performance of dynamic load balancing
algorithms for unstructured mesh calculations,” Concur-
rency: Practice and experience, vol. 3, no. 5, pp. 457–
481, 1991.

[12] M. Berger and S. Bokhari, “A partitioning strategy for
nonuniform problems on multiprocessors,” Computers,
IEEE Transactions on, vol. 100, no. 5, pp. 570–580,
1987.

[13] C. Farhat and M. Lesoinne, “Automatic partitioning of
unstructured meshes for the parallel solution of problems
in computational mechanics,” International Journal for
Numerical Methods in Engineering, vol. 36, no. 5, pp.
745–764, 1993.

[14] C. Truesdell, A first course in rational continuum me-
chanics. Academic Press, 1992, vol. 1.

[15] H. Simon, “Partitioning of unstructured problems for
parallel processing,” Computing Systems in Engineering,
vol. 2, no. 2, pp. 135–148, 1991.

[16] A. Pothen, H. Simon, and K. Liou, “Partitioning sparse
matrices with eigenvectors of graphs,” SIAM Journal on
Matrix Analysis and Applications, vol. 11, no. 3, pp. 430–
452, 1990.

[17] B. Hendrickson and B. Leland, “A multi-level algorithm

for partitioning graphs,” SC, vol. 95, p. 28, 1995.
[18] A. Gupta, “Fast and effective algorithms for graph par-

titioning and sparse-matrix ordering,” IBM Journal of
Research and Development, vol. 41, no. 1.2, pp. 171–
183, 1997.

[19] G. Karypis and V. Kumar, “Multilevel k-way partitioning
scheme for irregular graphs,” Journal of Parallel and
Distributed computing, vol. 48, no. 1, pp. 96–129, 1998.

[20] I. Dhillon, Y. Guan, and B. Kulis, “Weighted graph cuts
without eigenvectors a multilevel approach,” IEEE Trans.
Pattern Anal. Mach. Intell., vol. 29, no. 11, pp. 1944–
1957, 2007.

[21] J. Savage and M. Wloka, “Parallelism in graph-
partitioning,” Journal of Parallel and Distributed Com-
puting, vol. 13, no. 3, pp. 257–272, 1991.

[22] J. Gilbert and E. Zmijewski, “A parallel graph parti-
tioning algorithm for a message-passing multiprocessor,”
International Journal of Parallel Programming, vol. 16,
no. 6, pp. 427–449, 1987.

[23] P. Sanders and C. Schulz, “Think locally, act globally:
Perfectly balanced graph partitioning,” arXiv preprint
arXiv:1210.0477, 2012.

[24] F. Rahimian, A. Payberah, and S. G. et al, “Ja-be-ja: A
distributed algorithm for balanced graph partitioning,” in
Self-Adaptive and Self-Organizing Systems (SASO), 2013
IEEE 7th International Conference on. IEEE, 2013, pp.
51–60.

[25] C. Aggarwal, Y. Xie, and P. Yu, “Gconnect: a connectivity
index for massive disk-resident graphs,” Proceedings of
the VLDB Endowment, vol. 2, no. 1, pp. 862–873, 2009.

[26] G. Karypis and V. Kumar, “Parallel multilevel series
k-way partitioning scheme for irregular graphs,” Siam
Review, vol. 41, no. 2, pp. 278–300, 1999.

[27] J. D. S. Ghemawat, “Mapreduce: simplified data pro-
cessing on large clusters,” Communications of the ACM,
vol. 51, no. 1, pp. 107–113, 2008.

[28] T. Bui and C. Jones, “A heuristic for reducing fill-in in
sparse matrix factorization,” in PPSC, 1993, pp. 445–452.

[29] G. Karypis and V. Kumar, “Analysis of multilevel graph
partitioning,” in Proceedings of the 1995 ACM/IEEE
conference on Supercomputing. ACM, 1995, p. 29.

[30] K. Shvachko, H. Kuang, S. Radia, and R. Chansler, “The
hadoop distributed file system,” in Mass Storage Systems
and Technologies (MSST), 2010 IEEE 26th Symposium
on. IEEE, 2010, pp. 1–10.

[31] X. Zhu, Z. Ghahramani, J. Lafferty et al., “Semi-
supervised learning using gaussian fields and harmonic
functions,” in ICML, vol. 3, 2003, pp. 912–919.

[32] Q. Chen, T. Wu, and M. Fang, “Detecting local commu-
nity structures in complex networks based on local degree
central nodes,” Physica A: Statistical Mechanics and its
Applications, vol. 392, no. 3, pp. 529–537, 2013.

[33] C. Studholme, D. Hill, and D. Hawkes, “An overlap in-
variant entropy measure of 3d medical image alignment,”
Pattern recognition, vol. 32, no. 1, pp. 71–86, 1999.

